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Abstract—Continual advances in high-performance computing
have enabled the development of higher resolution and more
realistic simulations of a wide variety of scientific phenomena.
As a result, many computational science communities are increas-
ingly constrained by the massive volumes of data produced,for
example, strict storage constraints often force reductions in the
number of output variables, data output frequency, or simulation
length. Accordingly, modelers across many scientific domains
are beginning to adopt purpose-built scientific data compression
techniques as an effective mitigation for these challenges. The
origins of scientific data compression tools every so often lie in
image and video compression. Recently, compression researchers
have achieved state-of-the-art performance using neural networks
for natural image compression, but this achievement has yet to
be adapted to scientific data. This paper assesses the perfor-
mance of an existing autoencoder neural network compression
algorithm on two sets of two-dimensional floating-point scientific
data. Compared to state-of-the-art scientific data compression
algorithms SZ and ZFP, this out-of-the-box neural network
achieves higher peak signal-to-noise ratios at low bit rates, and
remains competitive in controlling maximum point-wise error.
This preliminary assessment paves the way for future research
into neural network compression on floating-point scientific data.

I. INTRODUCTION

Modern high performance computing (HPC) simulations
produce a staggering amount of data. For example, in 2019, the
Computational and Information Systems Laboratory (CISL)
at the National Center for Atmospheric Research (NCAR)
provided access to more than 5.1 petabytes of observational
and model data through its Research Data Archive [1]. Fur-
thermore, the amount of data available to scientists grows at
a rapid pace. As another example, a recent climate simulation
generated 260 terabytes of data every 16 seconds [2]. The
sheer data volume as well as fast pace of data generation
puts significant pressure on simulation scientists—they need to
consciously make choices on what data to preserve or discard.

One mitigation to this pressure is data compression. Data
compression comes in two flavors, lossless and lossy. Lossless
compression allows for storage of the original data without the
loss of any information by compactly representing bit/byte
patterns. However, lossless methods have limited effects on
floating-point scientific data, often times reducing the size of
data sets by no more than a factor of two [3], [4]. Alternatively,
practitioners employ lossy compression methods. Lossy com-
pression involves compressing data sets to the point where
certain information is lost. In the context of scientific data

compression, that lost information usually translates to small
errors on individual data points. If the impacts of imprecise
data points prove inconsequential in subsequent analyses, then
lossy methods can be acceptable with the added benefit of
significant reductions in data sizes.

Multiple lossy compression algorithms have been devel-
oped for scientific data; they generally fall into one of two
categories: predictive methods and transform-based methods.
Predictive methods attempt to predict individual data points
from other points in the data set, and encode only the differ-
ences that exceed a certain threshold. These differences tend
to be smaller in magnitude and follow patterns, thus easier to
compactly represent. Transform-based methods transform the
data into a different domain, such as frequency or wavelet,
and then encode the transformed values, which also tend
to be more easily compressed. In both cases—predictive
and transform-based—the aim is to prevent the storage of
redundant information.

Despite state-of-the-art performance in the domain of image
compression, neural networks, which can be classified as
transform-based compressors, have been understudied for sci-
entific data compression. In this study, we will evaluate the vi-
ability of neural networks to compress floating-point scientific
data. We begin with a brief introduction to lossy compression
in general and neural network based compression methods
(Section II), and a discussion on challenges of floating-point
scientific data compression (Section III). Then, we study
the effectiveness of a neural network compression model
(Section IV) on two-dimensional scientific data (Section V).
Results from this study show remarkable performance of this
network model, especially its excellent control of average
error. Finally, Section VI discusses the limitations of this
neural network and suggests future directions for investigation
into neural network based floating-point compressors.

II. BACKGROUND

A. Lossy Compression

Lossy compression has a long history of use in areas with
relatively high tolerance for data noise. Consumer images fit
in this use case, and as a result, image compression was
standardized very early on in the 1990’s with the introduction
of JPEG [5], which is still popular 30 years later. Today, newer
image compression techniques achieve higher compression
ratios while maintaining similar visual qualities, with notable



examples being JPEG2000 [6] which is an upgrade to JPEG;
HEIF [7], and WebP [8] which is promoted by Google.

Simulation scientists traditionally have a stringent pursuit
of data with the highest quality. However, under the growing
pressure of humongous data volumes, lossy compression has
started to see slow adoption [9]–[11], including a direct
application of JPEG2000 on climate data [12]. Lossy com-
pressors specifically designed for scientific data also emerged
in the past decade with SZ [13], [14] and ZFP [15] being
the most prominent ones. A noteworthy capability of these
compressors is that they can provide a maximum point-wise
error guarantee, which helps scientists to perform subsequent
analyses with more confidence. Finally, a more comprehensive
survey [16] provides a broader landscape of scientific data
reduction techniques and their applications.

B. Neural Networks for Lossy Image Compression

When nonlinear artificial neural networks emerged, re-
searchers suspected they could be used to provide better
compression quality than traditional methods that use linear
transforms. Indeed, in 2015, an early work showed that a
neural network trained on a large data set of thumbnail images
outperformed JPEG and other transform coders at a range of
bit rates [17]. Since then, the field has published a deluge
of neural network based image compression algorithms em-
ploying a variety of network architectures, including recurrent
neural networks [18], convolutional neural networks [19], [20],
generative adversarial networks [21], [22], and the very pop-
ular autoencoders [23], [24]. All of these networks make in-
cremental improvements over previously published algorithms,
largely due to their utilization of nonlinear transformations and
end-to-end optimization strategies [19].

C. Neural Networks for Lossy Scientific Data Compression

Scientific data compression using neural networks only
emerged in recent years. Liu et al. [25] use a generative
adversarial network to compress computational fluid dynamics
data. Despite their innovative network architecture, their pro-
posed method does not show significant improvements over
the discrete wavelet transform on root-mean-square error.

Chandak et al. [26] investigate the compression of multivari-
ate time series from IoT devices (smartwatches and sensors,
etc.). They use a prediction-quantization-entropy model that
predicts the next points in a time series and encodes the
prediction error. This neural network outperforms SZ and
produces the best compression ratio in their study.

Glaws et al. [27] develop, train, and test a custom con-
volutional autoencoder network to compress data from com-
putational fluid dynamic simulations. Compared to singular
value decomposition at a compression level of 64:1, their
neural networks show improved mean-squared-error perfor-
mance. However, their neural network only compresses at a
fixed compression level: 64:1, and they do not compare its
performance with other lossy compression algorithms.

To the best of our knowledge, no research has yet inves-
tigated the characteristics of neural networks applied to the

compression of floating-point scientific data in general, and
this work is likely the first attempt to do so.

III. CHALLENGES

Though sharing similarities with image compression, sci-
entific data compression faces unique challenges due to the
nature of the input data itself, and the intended use scenario,
which is quantitative scientific analysis.

Scientific data produced by a numerical simulation is usu-
ally represented as 32-bit or 64-bit floating point values, which
often exhibit vastly different dynamic ranges from variable to
variable (see examples in Section V-B). Images, however, have
a fixed dynamic range across the board. Another challenge is
the number of discrete values—images have a fixed number of
256 discrete values per channel, allowing for effective use of
certain techniques such as quantization. In contrast, scientific
data has almost infinite possible discrete values,

Intended to be used for quantitative analyses, lossy scientific
data compression has much stricter quality requirements than
image compression. First, the tolerance for average error,
which is often expressed by peak signal-to-noise ratio, is
smaller. Second, because scientists often require a guarantee
on the worst-cast scenario, it is considered equally if not more
important to reduce the maximum point-wise error that could
occur at any data point. Finally, any noise resulting from
lossy compression should be highly random and unbiased
so no artificial pattern is introduced to interfere with the
science. With these challenges in mind, we rigorously test
the performance of our neural network based compressor and
present our findings in the remainder of this paper.

IV. NEURAL NETWORK

For our experiments we adapted a neural network introduced
by Ballé et al. [23]. We choose this network from a number
of recently published works because 1) it shows competitive
image compression performance, 2) has an open-sourced code-
base, and 3) uses a mean-squared-error loss function instead
of an image-centric measure (e.g., SSIM), which is likely less
relevant on scientific analysis.

Though this network is designed for compressing natural
images, we expect that its compression ability will largely
translate to scientific data because both applications can share
a set of learned functions. More specifically, modern convo-
lutional neural networks consist of a hierarchy of layers and
each layer learns some spatial information in the data. Layers
lower in the network hierarchy learn primitive functions such
as edges, corners, and gradients over small spatial windows.
Layers higher in the hierarchy leverage learned functions from
lower layers, and they are capable of learning more complex
functions that incorporate features over larger spatial areas.
While natural images and scientific data overlap less in terms
of large-scale features, they share most small features. With
four convolutional layers in the Encoder of this model, we
hypothesize that a significant amount of learned functions,
especially the ones concerning small features, will perform
well in our application of scientific data compression.



�'�,QSXW�6OLFH �'�5HFRQVWUXFWLRQ

&RQYROXWLRQDO�/D\HU
1[�[���Ļ

&RQYROXWLRQDO�/D\HU
1[�[���Ļ

&RQYROXWLRQDO�/D\HU
1[�[���Ļ

*'1

*'1

*'1

&RQYROXWLRQDO�/D\HU
0[�[���Ļ

&RQYROXWLRQDO�/D\HU
�[�[���Ĺ

&RQYROXWLRQDO�/D\HU
1[�[���Ĺ

&RQYROXWLRQDO�/D\HU
1[�[���Ĺ

,*'1

,*'1

,*'1

&RQYROXWLRQDO�/D\HU
0[�[���Ĺ

&RQYROXWLRQDO�/D\HU
1[�[���

&RQYROXWLRQDO�/D\HU
1[�[���Ļ

DEV

5H/8

5H/8

&RQYROXWLRQDO�/D\HU
0[�[���Ļ

&RQYROXWLRQDO�/D\HU
1[�[���

&RQYROXWLRQDO�/D\HU
1[�[���Ĺ

5H/8

5H/8

5H/8

&RQYROXWLRQDO�/D\HU
0[�[���Ĺ

4 $(� <�
%LWVWULQJ $'�

4 $(� =�
%LWVWULQJ $'�

9

;

+\SHUSULRU�
(QFRGHU

(QFRGHU 'HFRGHU

+\SHUSULRU�
'HFRGHU

Fig. 1: Our compression neural network architecture. This
figure is adapted from work by Ballé et al. [23]. The 2D
data slice is input to the network starting at the top left.
The Encoder, Hyperprior Encoder, Hyperprior Decoder, and
Decoder are four major neural network modules; they are
accompanied by Quantizers (Q), Arithmetic Encoders (AE1
and AE2), and Arithmetic Decoders (AD1 and AD2) to
complete the data compression pipeline.

A. Network Architecture

The neural network in this study employs an autoencoder
architecture and a fine-tuned arithmetic encoder (AE1) in
its compression pipeline. Autoencoders are a class of neural
networks that pass their input through bottleneck layers that
have fewer dimensions than the input. The most important
features of the input are then “learned” and preserved by
the bottleneck layers in a compressed form. The rest of this
subsection will explain this pipeline in more detail.

Figure 1 presents this network architecture. Data flows

Model 1 2 3 4 5
λ 0.001 0.01 0.05 0.1 0.5

Model 6 7 8 9 10
λ 1 3 10 100 10000

TABLE I: Neural network models based on ten λ settings.

in this network as follows: input data is processed by the
Encoder which produces a latent representation Y. A copy of
Y is then passed into the Hyperprior Encoder which learns
a subsequent latent representation (Z) that is used to fine
tune the first arithmetic encoder (AE1). AE1 then further
de-correlates Y leveraging knowledge kept in Z to generate
a highly compact representation: Y Bitstring. Because Z is
required to correctly decode Y Bitstring, the final output of the
compressor then consists of Y Bitstring concatenated with Z
Bitstring, a compressed version of Z produced using a standard
arithmetic encoder (AE2).

In practice, autoencoders utilize components from other
classes of neural networks as building blocks. In the Encoder
block of this network, alternating convolutional layers and
non-linearities of generalized divisive normalization (GDN)
layers are used to create the bottleneck representation and
effectively downsample the input to produce Y .

The Hyperprior Encoder takes input of Y and learns a
piece of side information called a scale hyperprior Z. Z
encodes parameters of an entropy model conditioned on Y.
The motivation for using a Hyperprior Encoder is that output
of the Encoder (Y) still contains obvious spatial correlation,
and an arithmetic encoder could remove this correlation with a
proper entropy model (this removal of correlation is very well
illustrated in the original paper [23]). Note that the storage
required for this entropy model (Z) is negligible compared to
the output of the Encoder (Y).

Finally, we made a modification to the out-of-the-box net-
work so that it receives and reconstructs data in a single chan-
nel instead of three (red, green, and blue). This modification
does not change the data flow and architecture of this network.

B. Training

Our neural network is trained on natural images from the
ImageNet [28] data set which contains 1.28 million images
with an average size of 400 × 350. These images are treated
with two conditioning steps before training: first, they are
converted to grayscale because we modified the network to
accept data of a single channel rather than three. Second, the
grayscale values are converted to floating-point values in the
range of [0.0, 1.0], which is what the network accepts.

The training process uses a configurable loss function:

L = BPP + λ×MSE, (1)

which is a linear combination of the resulting bit per pixel
(BPP) and mean-square-error (MSE). Here both low BPP and
low MSE are desirable outcomes, but they cannot remain low
simultaneously, so a hyperparameter λ is used to balance their
relative weight, producing slightly different versions of the



loss function. Essentially, a smaller λ directs the network
to use less bits for encoding, resulting in more aggressive
compression but higher MSE. Similarly, a larger λ results in
more bits per pixel and lower MSE. Note that λ fine tunes
the training process to produce slightly different models that
achieve different levels of compression; it is not, however,
a parameter that the network takes as input when performing
compression. At the end, we trained ten different models using
ten different settings of λ as listed in Table I.

The ten resulting models compress at ten different levels,
but those levels are not convenient for a human user because
even for an individual model the BPP and MSE values can
still vary based on the input data. Therefore, unlike SZ and
ZFP, we cannot establish an error tolerance that we would like
the compressor to achieve.

The actual training proceeded in two phases. First, a small
model with a bottleneck layer of M = 256 and a large model
with a bottleneck layer of M = 512 were trained using λ =
1.0. The models were updated using batches of eight randomly
selected images for one million steps. Second, we duplicated
each model into five separate models: Models 1–5 are each
duplicates of the small model from phase one and Models
6–10 are each duplicates of phase one’s large model. After
duplication, we trained each with a different setting of λ (as
shown in Table I) for an additional one million steps using
batches of eight randomly selected images. This two phase
training scheme reduced the total training hours.

V. STUDY

A. Methodology

Our study aims to better understand the viability and char-
acteristics of neural networks for scientific data compression.
There are two phases of this study: 1) comparison and 2) error
bias evaluation.

In the comparison phase, we compare the neural network
against two leading scientific data compressors, SZ and ZFP,
aiming to test if neural networks can achieve similar com-
pression qualities with similar storage budgets. This com-
parison uses “rate-distortion” curves, which depict the level
of distortion occuring at each compression rate. There are
two distortion measures used here: peak signal-to-noise ratio
(PSNR) and maximum point-wise error. These two measures
are both necessary because while PSNR provides an overall
trend between compression quality and bit rates, maximum
point-wise error captures the worst-case scenario noise that
could risk the soundness of subsequent quantitative analyses.

In our experiment, PSNR is calculated using TensorFlow’s
built-in function which implements the following equation:

PSNR(X, X̂) = 10 log10

(
R2

MSE

)
, (2)

where X is the original data, X̂ is the reconstruction, and
R is the maximum fluctuation in the data. MSE can be
calculated as

∑N
1 (Xi − X̂i)

2/N . In most image processing
applications, acceptable PSNR values range from 20.0 to
100.0. For maximum point-wise error, we normalize it to the

Variable Minimum Maximum Mean Std. Dev.
Velocity -5.71e+0 6.88e+0 -1.13e-1 1.51e+0

Enstrophy 3.45e-3 1.91e+6 6.29e+3 1.69e+4

TABLE II: Summary statistics for two variables from the
Isotropic Turbulence data sets.

range of [0.0, 1.0] (noted as NPME) so results from different
variables are easily comparable:

NPME(X, X̂) =
|max(X − X̂)|

max(X)−min(X)
. (3)

The comparison is between rate-distortion curves from
the neural network and curves from traditional compressors.
Section V-D presents findings of this evaluation.

In the error bias evaluation phase, we plot histograms of
error introduced by the neural network, and test whether they
follow roughly zero-meaned Gaussian or uniform distributions,
which are the two most common forms of random distribu-
tions [29]. The findings are presented in Section V-E.

B. Test Data

We use two data sets for our evaluation, and they are chosen
for two reasons. Firstly, both data sets are publicly available,
which facilitates the reproducibility of our study. Secondly,
both data sets are representative of the types of data commonly
produced by HPC simulations. These two data sets also have
distinct characteristics which make them nice benchmarks for
compression in general. We note that each variable from these
two data sets are normalized to the range of [0.0, 1.0] to
accommodate the neural network.

The first data set concerns a turbulance simulation. It
includes two-dimensional slices of velocity and enstrophy
from a Forced Isotropic Turbulence Simulation from the Johns
Hopkins Turbulence Database (JHTDB) [30]. We selected data
set #5 which solves Navier–Stokes equations using pseudo-
spectral method on a 40963 grid.

The velocity field of this simulation is homogeneous in
nature, and we extracted 2D slices from the 3D volumes
for our evaluation. More specifically, twenty random two-
dimensional slices of size 10242 were selected from the 40963

three-dimensional snapshot by first selecting a random X
coordinate and then extracting a 2D slice centered in the Y
and Z directions. All three components of velocity were used,
so there are sixty velocity slices in total.

To further investigate whether the neural network based
compressor is sensitive to data sizes, as some of the early
neural networks achieve much higher compression efficiency
on smaller images [17], we also test on the same slices
but in smaller subdomains. More specifically, we performed
domain decomposition on every 10242 slice to generate four
subdomains at size 5122 and sixteen subdomains at size 2562.
These subdomains are compressed individually and then later
concatenated together to restore slices of 10242 for evaluation
purposes. Overall, this process provided us an additional 240
slices at 5122 and 960 slices at 2562.



0 100 200
0

100

200

0 100 200
0

100

200−3

−2

−1

0

1

10−2

100

102

104

106

Fig. 2: Example 2D visualization from the Isotropic Turbu-
lence data sets: velocity on the left using a linear scale, and
enstrophy on the right using a logarithmic scale.

0 100 200
0

50

100

150 225

250

275

300 Fig. 3: Example
2D visualization of
TS (surface tempera-
ture), a rather smooth
variable, from CESM
LENS data set.

Based on velocity, we derive enstrophy for evaluation as
well, since enstrophy is a quantity with many small-scale
features that often exhibit sudden value changes, and thus is
considered hard to compress. Given a velocity field v over a
domain D, enstrophy is defined by Equation 4.

E(v) =
∫
D

|curl(v)|2dD. (4)

We approximated enstrophy using a sixth-order finite differ-
ence method for twenty 2D slices at the same locations where
we extracted the 10242 velocity slices, and these enstrophy
slices are also of size 10242. Each enstrophy slice also goes
through domain decomposition to produce four 5122 slices and
sixteen 2562 slices, which left us with twenty 10242 slices,
eighty 5122 slices and 320 2562 slices in total.

Combining velocity and enstrophy, the first data set has
eighty independent slices at 10242 and their domain decom-
posed versions at smaller sizes. Table II summarizes basic
statistics associated with the selected velocity and enstrophy
slices, and Figure 2 provides sample visualizations of both
variables. Note that even though velocity is color mapped on
a linear scale and enstrophy is on a log scale, the enstrophy
plot still shows finer structures and more rapid value changes.

The second data set concerns a climate simulation: it is from
the Community Earth System Model (CESM) Large Ensemble
(LENS) Community Project [31]. For our experiment we
used ten time steps representing ten days from October 1922,
all from the first ensemble member. Among available 2D
variables, we removed ones that have missing values and ones
that are all zeros—variables of this kind are usually treated
with special care in a climate analysis and are not of our
major concern with regard to compression. At the end of
variable selection, we have 51 variables from both the model’s
dynamical core and adiabatic/chemical processes. With ten

time steps for each variable, there are 510 members in this
data set, and all members have a resolution of 192×288. As an
example, Figure 3 visualizes variable TS, surface temperature.

It is worth noting that this CESM-LENS data set is highly
diverse with different variables having different characteristics
that could greatly impact how “friendly” they respond to
compression. To quantify these differences, Table IV in the
Appendix provides statistics on each one of these 51 variables.
For example, so4_a1_SRF and PRECSC have a range in the
order of 10−8, while Z050 and z500 have a range in the order
of 103, demonstrating the big difference in range. In addition
to traditional statistics, we also measure how self-similar a
variable is by calculating their auto-correlation scores. Auto-
correlation is defined by shifting a variable by one or more
grid points (lags) and then computing the correlation between
the original and shifted versions of it [29]. An autocorrelation
score then ranges between zero and one, with zero meaning
no self-similarity at all and one meaning the highest degree of
self-similarity. A higher autocorrelation score often means that
a variable is easier to compress. Table IV also provides one-
lag autocorrelation in two directions (latitude and longitude)
of each variable. It shows that most autocorrelation scores
range between 0.8 and 1.0, and a few noticable exceptions
are PRECSL at 0.58, PRECSC at 0.18, and ICEFRAC having
drastically different autocorrelations in two directions (0.28
and 0.93). This difference in autocorrelation scores again
demonstrates the diverse nature of this CESM-LENS data set.

Finally, in our experiment, each variable has multiple
samples (twenty in Turbulence data set and ten in CESM-
LENS data set). To calculate PSNR and NPME over all
samples, we concatenate all samples together and calculate the
statistics over the concatenated domain, though each sample
is individually compressed and reconstructed.

C. Comparison Compressors

We selected two leading scientific data compressors, SZ and
ZFP, to compare against the neural network algorithm.

SZ was originally designed in 2016 and has gone through a
few iterations of improvements [13], [14]. SZ is a predictive
method with a selection of prediction schemes, and it features
very rich controls of compression qualities expressed in a
number of metrics, including PSNR and maximum point-wise
error among others. In our experiment, we used its PSNR
control to achieve different compression levels. This study uses
SZ version 2.1.11.1.

ZFP was introduced in 2014 specifically for scientific data
compression [15]. It partitions any d-dimensional input data
into 4d blocks, and then individually applies an orthogonal
transform to decorrelate each block, making it a transform-
based method. ZFP also supports multiple controls of its com-
pression quality, and in our experiment, we used the “fixed-
accuracy” control which guarantees the maximum point-wise
error. As its documentation noted, this mode “gives the highest
quality (in terms of absolute error) for a given compression
rate” [32]. The software version was 0.5.5 in this study.
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Fig. 4: Rate-distortion cuves that compare different compres-
sors and different slice dimensions. In each plot, the X-axis
is compression rate measured by bit per pixel, and is plotted
on a logarithmic scale. The Y-axis is distortion: Subfigures 4a
and 4b use PSNR and Subfigures 4c and 4d use NPME. Note
that there is only one curve for ZFP in each plot because ZFP
produces the exactly same results in all three slice dimensions.

D. Results—Comparison with SZ and ZFP

1) Comparisons on Turbulence Data Set: Using the Turbu-
lence data set described in Subsection V-B, we plot aggregated
rate-distortion curves for velocity and enstrophy variables.

Subfigures 4a and 4b present rate-distortion curves with
PSNR, which compile results from multiple compression lev-
els of all three compressors. They show that neural networks
often achieve higher PSNR in low bit rate ranges (i.e., less than
one bit per pixel), but their lead is less significant in higher
rate ranges. Neural network curves also do not extend beyond
around three bits per pixel on this data set because the network
was trained on greyscale images that do not contain more than
eight bits of useful information. So, in our case, the network
did not learn functions necessary to compress using higher bit
rates. Finally, different slice dimensions show a very slight
effect on the compression efficiency of neural networks. This
effect is no more than what SZ exhibits, but is more than what
ZFP exhibits, which is essentially zero, because ZFP operates
on 42 blocks anyway in all three slice dimensions.

Subfigures 4c and 4d present rate-distortion curves with
NPME; they show different comparison results between two
test variables. With enstrophy, three compressors are in a vir-
tual tie. With velocity, neural networks show a clear advantage
below one bit per pixel, but this advantage starts to disappear

Velocity Enstrophy
Compression
Level Mean Standard

Deviation Mean Standard
Deviation

1 -9.3e-2 1.97e-1 7.05e2 1.56e4
3 -4.6e-2 1.49e-1 -1.59e2 1.17e4
7 -3.1e-2 1.23e-1 -4.32e2 9.59e3
10 -2.3e-2 1.08e-1 -3.28e2 8.31e3

TABLE III: The mean and standard deviation of each error dis-
tribution shown in Figure 6. This table is laid out in the same
way as Figure 6. Each row represents a different compression
level, as indicated in the first column. The compression level
numbers are defined in Table I.

in higher bit rate ranges. With regard to sensitivity to slice di-
mensions, neural networks exhibit a modest fluctuation where
bigger slices tend to yield smaller NPME. This fluctuation is
clearly less than what SZ exhibits, but more than what ZFP
exhibits, which is essentially zero.

2) Comparisons on CESM-LENS Data Set: Using the
CESM-LENS data set described in Section V-B, Figure 7 in
the Appendix plots rate-distortion curves with PSNR for all
51 variables. These curves vary greatly from one to another,
indicating the diverse nature of this data set. Also, no variable
or compression level uses more than seven bits per pixel,
a consequence of the limit of neural networks trained on
images that contain no more than eight bits per pixel of
useful information. Among all 51 variables, we choose three
to examine more closely, which are T010 (temperature at
10 mbar pressure surface) representing “easy to compress”
variables; FLUT (upwelling longwave flux at top of model)
representing “hard to compress” variables; and TS (radiative
surface temperature) in between. These three variables are
marked in Figure 7 with dots on their respective curves.

Figure 5 provides detailed comparison results on the three
selected variables. When comparing PSNR, all three plots
show that neural networks are able to achieve a higher PSNR
than SZ and ZFP with the same bit rate, especially when bit
rates are low. When comparing NPME, neural networks yield
a little lower, higher, and similar NPME scores with T010,
TS, and FLUT respectively, but in all cases the amount of
difference is small. These findings are consistent with com-
parisons using the Turbulence data set that neural networks
often achieve higher PSNRs while still staying competitive in
controlling NPME.

E. Results—Error Bias Evaluation

In phase two of our study, we determine if error introduced
by lossy compression exhibit obvious biases. Figure 6 plots er-
ror distributions of the two variables from the Turbulence data
set, which are representative of outcome from this evaluation.
Here errors are calculated by subtracting the reconstructed
values from the original values. The four subplots within each
variable represent four different compression levels, from more
compression (top) to less compression (bottom), and this is
reflected in the histograms—the standard deviation shrinks
from top to bottom (note the scales on the X axis). Table III
provides mean and standard deviation of these distributions.
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Fig. 5: Rate-distortion curves on three variables from the CESM-LENS data set. In each plot, PSNR curves are plotted against
the left axis in blue and NPME curves are plotted against the right axis in red. The X-axis is bit per pixel.
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Fig. 6: Histograms showing er-
ror distribution for the neural
network compressor on vari-
ables velocity (left) and enstro-
phy (right) from the Turbulence
data set. Each histogram rep-
resents a different compression
level: from more compression
at the top to less compression
at the bottom, or levels 1, 3, 7,
and 10 defined in Table I. The
vertical black line marks the
point on the X-axis where er-
ror is zero. Mean and standard
deviations of these distributions
are presented in Table III.

These histograms show that errors approximately follow
Gaussian distributions. However, the left-side tails often ap-
pear bigger and the means are often skewed towards the
negative side. This indicates that the neural network tends to
overestimate reconstructed values. An interesting observation
is that for enstrophy, compression level 3 actually achieves the
closest-to-zero mean, even though levels 7 and 10 produce
less error overall. This hard-to-explain phenomenon might
suggest directions of how to reduce the skewness with other
compression levels. Overall, our tested neural network shows
less-than-satisfactory performance in maintaining bias free,
which warrants further investigation and research.

VI. LIMITATIONS AND FUTURE WORK

The current neural network compression model has a few
limitations, including the ones discussed in previous sections:
non-intuitive compression quality controls, limited bit rate
ranges, and skewed error distributions. This section discusses
two other limitations and potential future work.

The first limitation is with regard to compression artifacts.
During the course of this study we discovered that the neural
networks sometimes inject obvious compression artifacts at
the edges of some variables with small or uneven dimensions.
Despite looking obvious when plotted, these artifacts do not

seem to have a big impact on statistics such as PSNR, which
we suspect is why the neural networks did not prevent them
from happening. Unfortunately, even with some rudimentary
investigations, we were not able to determine the cause of
these artifacts nor a set of conditions to reliably trigger them,
which suggests that more investigattion is needed to eliminate
these unexpected artifacts.

The second limitation is computational time. Currently the
neural networks takes around five seconds to compress or
decompress a slice at 10242 on a CPU, which is approximately
one order of magnitude slower than traditional compressors.
This performance could potentially be improved by moving the
calculations to a GPU, but this approach might incur rounding
errors as pointed out by [33]. After all, more research is needed
to improve the inference speed and mitigate rounding errors
so GPU compression/decompression can be possible.

With regard to future work the most prominent is training
the model on relevant data sets, namely floating point scientific
data. More ideally, they can be trained on generic data sets and
then be fine tuned using data specifically from their intended
compression task. The loss function during training can also
be adjusted in an attempt to address some of the limitations
discussed here. Finally, the network can be improved to



support 3D volumetric data as well, since it poses greater
pressure to HPC data storage and management systems.

VII. CONCLUSION

Our study shows the promising potential of using neural
network based lossy compressors on floating-point scientific
data, and supports the need for their further investigation. The
neural network in this study, despite that it was trained and
optimized exclusively on natural images, performs well on
two representative scientific data sets. Using measures of peak
signal-to-noise ratio and maximum point-wise error, it often
outperforms two purpose-built scientific data compressors in
lower bit rates, and remains competitive in higher bit rates.
The two test data sets we chose are from HPC application
domains that are some of the most challenged by data deluge,
and are highly varied in their characteristics, providing a strong
indicator that other HPC applications might also benefit from
neural-network-based compression.
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VIII. APPENDIX

Variable Range Minimum Maximum Mean Standard Auto-corr Auto-corr
Deviation (Latitude) (Longitude)

Q200 1.89e-04 6.63e-07 1.89e-04 1.64e-05 1.67e-05 0.969 0.976
FSNSC 3.21e+02 0.00e+00 3.21e+02 1.68e+02 1.10e+02 0.870 0.985
so4_a1_SRF 2.22e-08 7.29e-18 2.22e-08 3.54e-10 8.14e-10 0.915 0.935
FSNS 3.21e+02 0.00e+00 3.21e+02 1.47e+02 1.04e+02 0.869 0.973
U010 1.79e+02 -5.08e+01 1.28e+02 1.09e+01 3.43e+01 0.995 0.996
V850 6.53e+01 -3.13e+01 3.40e+01 2.76e-01 5.76e+00 0.970 0.963
UBOT 5.54e+01 -3.04e+01 2.50e+01 3.00e-01 6.26e+00 0.982 0.967
so4_a3_SRF 7.24e-10 2.12e-19 7.24e-10 6.72e-12 1.87e-11 0.922 0.948
FLNSC 1.90e+02 -1.05e+01 1.79e+02 7.97e+01 2.31e+01 0.945 0.951
SHFLX 4.57e+02 -8.49e+01 3.72e+02 1.35e+01 2.92e+01 0.905 0.899
dst_a1_SRF 1.04e-06 2.12e-20 1.04e-06 1.24e-09 9.84e-09 0.878 0.884
TAUY 2.69e+00 -1.25e+00 1.44e+00 -2.22e-03 1.02e-01 0.955 0.946
PRECT 1.92e-06 -4.53e-22 1.92e-06 2.82e-08 6.22e-08 0.917 0.872
TREFHTMX 1.13e+02 2.02e+02 3.15e+02 2.79e+02 2.32e+01 0.950 0.972
VBOT 5.71e+01 -2.90e+01 2.81e+01 4.04e-01 5.39e+00 0.972 0.962
TMQ 7.18e+01 6.16e-02 7.18e+01 1.78e+01 1.53e+01 0.973 0.987
PSL 1.06e+04 9.37e+04 1.04e+05 1.01e+05 1.47e+03 0.975 0.987
Q500 6.32e-03 8.39e-06 6.32e-03 8.80e-04 1.06e-03 0.966 0.968
Z050 2.75e+03 1.81e+04 2.09e+04 2.02e+04 7.76e+02 0.985 0.982
PRECSL 5.11e-07 -2.24e-20 5.11e-07 4.91e-09 1.72e-08 0.584 0.840
FLNS 2.36e+02 -5.63e+01 1.79e+02 6.64e+01 2.91e+01 0.936 0.934
TREFHT 1.21e+02 1.94e+02 3.15e+02 2.76e+02 2.36e+01 0.948 0.974
TAUX 2.53e+00 -1.30e+00 1.23e+00 -1.67e-02 1.22e-01 0.965 0.956
pom_a1_SRF 1.64e-07 1.16e-19 1.64e-07 4.39e-10 2.05e-09 0.921 0.931
bc_a1_SRF 1.54e-08 1.19e-20 1.54e-08 6.86e-11 3.38e-10 0.916 0.928
soa_a1_SRF 7.07e-08 2.44e-17 7.07e-08 9.36e-10 3.54e-09 0.929 0.916
TS 1.13e+02 2.00e+02 3.13e+02 2.77e+02 2.46e+01 0.932 0.974
Q850 1.65e-02 1.59e-06 1.65e-02 4.51e-03 3.75e-03 0.958 0.982
T200 4.51e+01 1.89e+02 2.34e+02 2.13e+02 7.95e+00 0.977 0.978
T500 4.93e+01 2.22e+02 2.72e+02 2.51e+02 1.30e+01 0.974 0.986
PRECL 1.17e-06 -4.53e-22 1.17e-06 1.37e-08 4.18e-08 0.866 0.840
PRECSC 7.00e-08 0.00e+00 7.00e-08 1.30e-10 1.37e-09 0.176 0.472
dst_a3_SRF 2.78e-05 6.31e-18 2.78e-05 2.09e-08 2.14e-07 0.860 0.858
WSPDSRFAV 3.33e+01 3.07e-01 3.36e+01 7.61e+00 4.33e+00 0.956 0.952
T850 1.04e+02 1.98e+02 3.02e+02 2.71e+02 1.90e+01 0.968 0.972
so4_a2_SRF 2.48e-09 4.69e-18 2.48e-09 1.01e-11 3.66e-11 0.892 0.908
QBOT 2.33e-02 1.59e-06 2.33e-02 6.58e-03 5.66e-03 0.961 0.986
ICEFRAC 1.00e+00 0.00e+00 1.00e+00 1.29e-01 3.18e-01 0.280 0.935
Z500 1.34e+03 4.61e+03 5.94e+03 5.50e+03 3.62e+02 0.976 0.988
U200 1.39e+02 -3.95e+01 9.93e+01 1.46e+01 1.74e+01 0.990 0.984
U500 8.14e+01 -2.77e+01 5.37e+01 6.52e+00 1.10e+01 0.989 0.983
OMEGA500 1.99e+00 -1.09e+00 9.02e-01 -1.38e-03 9.36e-02 0.924 0.885
T010 6.19e+01 1.87e+02 2.49e+02 2.25e+02 1.01e+01 0.985 0.968
TREFHTMN 1.11e+02 1.94e+02 3.05e+02 2.74e+02 2.40e+01 0.945 0.975
FSNTOA 4.00e+02 0.00e+00 4.00e+02 1.87e+02 1.21e+02 0.862 0.974
FLUT 2.47e+02 9.75e+01 3.44e+02 2.23e+02 5.05e+01 0.956 0.966
soa_a2_SRF 2.67e-10 1.05e-22 2.67e-10 1.62e-12 6.62e-12 0.864 0.866
U850 7.31e+01 -3.96e+01 3.35e+01 1.83e+00 7.63e+00 0.983 0.971
V200 1.14e+02 -5.97e+01 5.48e+01 -2.42e-01 1.21e+01 0.985 0.988
LHFLX 8.16e+02 -7.20e+01 7.44e+02 6.23e+01 6.82e+01 0.941 0.958
V500 7.55e+01 -3.48e+01 4.07e+01 -1.26e-02 7.51e+00 0.978 0.982

TABLE IV: Summary Statistics for CESM LENS Variables used in our experiment. Autocorrelation (noted as Auto-corr) was
calculated with a 1-lag shift in either latitude or longitude directions. Autocorrelation values were averaged for each variable
across 10 timesteps.
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Fig. 7: Rate-distortion curves with PSNR for every variable in the CESM-LENS dataset. The different colors represent different
variables in the dataset averaged across 10 timesteps. Lines with dots along them mark the variables which are studied in the
main text and compared with other compressors in Figure 5.


