
Scientific Data Compression with SPERR

(github.com/NCAR/SPERR)

Presenter: Samuel Li

11/13/23 1

What makes SPERR unique?

• It’s got a weird name
• Pronounced like spur

• Based on wavelet transforms
• Excellent on decorrelation

• Fixed-rate compression

• Natural support for “flexible-rate decoding”
• A prefix (subset from the beginning) of the compressed bitstream is still valid for

decompression, though less accurate.

11/13/23 2

Design Consideration / Motivation

• Wavelets naturally supports fixed-size compression.

• Error-bounded compression is a must have to be useful on scientific data
compression.
• Maximum point-wise error (PWE) to be specific.

• Observation: error distribution is approximately a bell curve
• Very few data points have large errors.

• Viable to explicit encode data points violating a PWE tolerance: outliers.

11/13/23 3

Error Distribution and Outlier Correction

• Example: Miranda Viscosity field: ~37M data points. Tolerance = 1x10-8

11/13/23 4

Error Distribution and Outlier Correction

11/13/23 5

Compression Pipeline

11/13/23 6

(Step 1)
Data Volume Wavelet XForm Wavelet Coeff. SPECK Coding

(Step 2)
Quantized

Coefficients
Inverse Wavelet Outliers Outlier Coding

• Two-step process: wavelet compression + outlier correction

Decorrelation—Wavelet Transforms

• A specific type of wavelets, CDF 9/7, is very good at decorrelation, thus favored in
compression applications.

• Wavelets take the input and produce the same number of coefficients: reversible!

• There are two flavors: scaling coeff. and wavelet coeff., serving different purposes:

11/13/23 7

The better decorrelation,
the smaller wavelet
coefficients!

Coefficient Coding
• The SPECK [Pearlman et al. 2004] algorithm encodes coefficients from most to least

significant bits.
• Step 1: locate “significant coefficients” w.r.t. the current bitplane.

• Step 2: quantize all located “significant coefficients” w.r.t. the current bitplane.
• Iterate these two steps with the next bitplane, which is less significant.

• Step 1:
• Divide the volume (octree style), perform significance test on each subtree, repeat until finding

individual significant points. Significance test results are saved.

• The more spatially clustered the significant coefficients, the more they share the cost of saving
significance test results, i.e., higher coding efficiency.

• Step 2:
• Significant coefficients are quantized to a fixed precision q. It produces 1 bit per coefficient.

• Insignificant coefficients are treated as zero’s. The more zero’s, the higher coding efficiency.
11/13/23 8

Outlier Coding

• Find the outliers: we perform inverse wavelet transform using
the quantized coefficients, and compare the reconstruction to
the original input.
• Outliers: PWE > tolerance.

• Encode these outliers, using a modified SPECK algorithm.
• Outliers are synonym of “significant coefficients”

• Outliers are quantized as integer multiples of the tolerance: correctors.

• Inliers are zeros.

• Observation: errors are mostly within 1 or 2 units of the tolerance.

11/13/23 9

Balance: Coefficient and Outlier Coding

• Total storage = Coefficient Storage + Outlier Storage.
• Too much coefficient coding: reduce average error unnecessarily low.

• Too much outlier coding: miss out the high efficiency of coefficient coding.

• Goal: find a balance where the total storage is minimal.

• This balance is governed by quantization step q in coefficient coding:
• Smaller q ó more coefficient coding; bigger q ó more outlier coding

• q is on the same magnitude with the tolerance.

11/13/23 10

Balance: Coefficient and Outlier Coding

11/13/23 11

Empirical Formula: q = 1.5 tol

Flexible-rate Decoding

• Desirable property: the prefix is also the most efficient compressed form at that
bitrate (in terms of average error). I.e., there’s no storage overhead to take
advantage of flexible-rate decoding!

• Caveats:
• No built-in error guarantee when using a portion of the bitstream.

• When domain decomposition is used, flexible-rate decoding needs to be applied on each
subdomain independently.

• No incremental updates. I.e., a complete decompression operation is needed to
incorporate incoming bits.

11/13/23 12

Characteristics, Performance

• SPERR is effective in a wide range of compression qualities:
• Low quality, high compression ratio: visualization

• High quality, low compression ratio: saving double-precision output at similar qualities as
single-precision (or higher).

• Parallelization:
• On CPUs: domain decomposition (2563 by default). Each subdomain is processed

independently.
• On GPUs: noticeably, there isn’t a GPU implementation yet.

• Given a prescribed PWE tolerance, SPERR likely produces the highest
compression ratio.

• Given a prescribed PWE tolerance, SPERR takes a longer time (than ZFP and SZ)
to compress.

11/13/23 13

Integrations/Applications

• I/O plugins: HDF5 and ZARR (work in progress)
• Applications: MURaM solar simulation
• Future: cloud-based data portals:
• egress costs are high (9 cents per GB).
• transmission may be slow.

• Future: tiered storage:
• a fraction (of the compressed bitstream) on hot

storage and the bulk on cold storage.

11/13/23 14

