
Lossy Scientific Data Compression With SPERR
Shaomeng Li

Nat’l Center for Atmospheric Research
Peter Lindstrom

Lawrence Livermore Nat’l Lab
John Clyne

Nat’l Center for Atmospheric Research

Abstract—As the need for data reduction in high-performance
computing (HPC) continues to grow, we introduce a new and
highly effective tool to help achieve this goal—SPERR. SPERR
is a versatile lossy compressor for structured scientific data; it
is built on top of an advanced wavelet compression algorithm,
SPECK, and provides additional capabilities valued in HPC
environments. These capabilities include parallel execution for
large volumes and a compression mode that satisfies a maximum
point-wise error tolerance. Evaluation shows that in most settings
SPERR achieves the best rate-distortion trade-off among current
popular lossy scientific data compressors.

I. INTRODUCTION

Numerical simulations running on high-performance com-
puters (HPCs) face a growing gap between data generation and
storage—the ability to generate data is very much outpacing
the ability to store data. As a result, simulation scientists are
forced to take mitigation measures, including outputting fewer
variables, outputting less frequently, and with an increasing
popularity, adopting a data compression strategy. Between the
two types of compression, lossless and lossy compression,
the former is of limited use in scientific data compression,
because it only achieves very modest data reduction. The latter,
however, offers the potential for significant data reduction, and
is viable as long as the information loss does not lead to mis-
interpretation of scientific results. In this paper, we focus on
lossy compression of floating-point data.

Amongst the current leading lossy scientific data compres-
sion methods [1]–[10] there exists a good degree of variation
in performance and capabilities, such as compression and
decompression speed, support for an error guarantee, and rate-
distortion trade-offs. Better rate-distortion trade-offs, for exam-
ple using less storage for the same compression quality, may
be prioritized in many applications. Consider large community
data sets that can be analyzed by hundreds or even thousands
of researchers, and have a lifetime lasting years. One example
is the NCAR CESM LENS climate simulation data set [11],
[12], which occupies 500 TB of on-premise storage. Another
example is the Johns Hopkins Turbulence Database [13],
[14], which hosts hundreds of terabytes of publicly accessible
turbulence simulation outputs. In both cases the data sets may
be written once, but accessed and/or transmitted repeatedly
by researchers worldwide. Thus, achieved compression rates
may trump other considerations such as computational speeds.
Such scenarios serve as a motivation for our work.

When performing lossy compression, a criterion is needed to
decide when to terminate the coding process. Most termination
criteria are expressed as either a size bound or an error bound.
With a size-bounding criterion, the compression algorithm

terminates when its output reaches a specified size, which
is often expressed as a bitrate measured by bit-per-point, or
BPP. With an error-bounding criterion, however, the algorithm
strives to achieve the maximum data reduction without the
resulting reconstructed data exceeding an error bound. Note
that no compressor can generally satisfy size and error bounds
simultaneously. For the lossy compression of scientific data, a
preferred termination criterion is often an error bound, partic-
ularly a point-wise error (PWE) tolerance. A PWE tolerance
t (t > 0) means that any data point cannot deviate from its
true value by more than t as a result of lossy compression; it
often serves as an intuitive quality control in practice.

One of the most efficient lossy compressors from a rate-
distortion perspective is SPECK [15], [16], which encodes
coefficients produced by wavelet transforms. SPECK only
operates as a size-bounded compressor. The development of
SPECK, like most other transform-based schemes targetting
multi-media (e.g., imagery and video) compression, was driven
by the desire to minimize average error, not the maximum
PWE, under a size constraint. However, it is also our observa-
tion that SPECK often proportionately reduces the maximum
PWE while minimizing average error; this observation mo-
tivates our approach to augment SPECK to support a PWE
guarantee while keeping its low average error.

We have implemented an improved version of the SPECK
algorithm. After compressing input data with our SPECK im-
plementation, we find all reconstructed data points that exceed
a specified PWE tolerance, which are referred to as outliers.
We then record their positions and correction values needed
to restore the outlier values to be within the PWE tolerance,
also using a SPECK-inspired algorithm. Our software taking
on this approach is named SPERR, which stands for SPEck
with ERRor-bounding. SPERR offers the best performance
of any of the leading compression technologies we have
evaluated from a rate-distortion perspective. The rest of this
paper describes in detail our major contributions:

• an open-source scientific data compressor, SPERR, that
features the ability to bound a maximum point-wise error
(GitHub: https://github.com/NCAR/SPERR);

• thorough discussion and evaluation of design choices we
have made when developing SPERR; and

• comparisons with leading scientific data compressors that
provide a full profile of SPERR’s characteristics.

II. BACKGROUND

The random nature of the least significant bits in floating
point numbers, and specialized requirements—such as the de-

https://github.com/NCAR/SPERR

sire to control point-wise errors—have led to the investigation
and development of purpose-built scientific data compression
technologies [1]–[10], [17]–[19]. Here, we briefly review only
the current and most widely reported ones in the literature,
which generally fall into two broad categories: prediction-
based and transform-based.

The most widely reported prediction-based compressor is
the SZ family of compressors [4]–[7], which have explored
a variety of mathematical predictors, the most recent being
splines [5]. The most widely reported transform-based com-
pressor is ZFP [8], which employs a custom decorrelating
transform, similar to the discrete cosine transform. SZ and
ZFP were both developed in the last decade and have received
great amounts of attention in both literature and practice.

In addition to these two established compression technolo-
gies, we reference two more recent additions: MGARD [2],
[3] and TTHRESH [18]. The former is inspired by wavelet
decompositions [20]–[24] and multi-grid methods used by
linear solvers. TTHRESH is also transform-based, however,
unlike most transform-based approaches that use predefined
bases, TTHRESH uses the Tucker tensor decomposition [25]
to generate data-dependent bases. The target application for
TTHRESH is visualization, where bigger compression error is
an acceptable trade-off for greater compression.

Our compressor, SPERR, is based on wavelet transforms.
The result of applying wavelet transforms to an input is a
set of wavelet coefficients having the property of information
compaction: most information is stored in a small percentage
of coefficients, whose information content is proportional to
their magnitude. Wavelet transforms are reversible and achieve
no data reduction themselves; it is during the coefficient coding
process that data reduction occurs and information loss may
be introduced. A wide range of sophisticated algorithms have
been developed to efficiently code the addresses and values of
the small amount of most information-rich coefficients [15],
[16], [26]–[28]. Among them, SPECK [15], [16] serves as the
basis of our own compressor (more discussion in Section III).

SPECK does not support a PWE guarantee though. Our
approach to supporting such a guarantee is to explicitly encode
positions and correction values of outlier residuals so we
can later correct the offending reconstructed data points. The
problem of encoding these positions and values is similar to
compacting sparse matrices used in solving large linear sys-
tems. The most commonly employed methods for storing such
matrices are Compressed Sparse Row (CSR) or Compressed
Sparse Column (CSC) storage. However, CSR and CSC are
far from optimal in our application because they still use
naive storage to record element positions and values. Another
approach is to record positions using bitmap coding [29], [30],
and to handle correction values using, for example, variable-
length coding (e.g., universal codes [31]). The SZ family of
compressors takes this approach: quantized outlier correction
values are stored as non-zero integers and then Huffman
coded together with zero-valued inliers. As we shall show,
our outlier coder accomplishes these two separate tasks in a
unified manner with better efficiency.

III. WAVELET TRANSFORMS AND CODING

This section describes the specifics of our implementation
of a biorthogonal wavelet transform and the SPECK wavelet
coding algorithm, paying particular attention to improvements
that we have made to better control the amounts of resulting
outliers. Given the close ties between SPECK and our outlier
coding algorithm (more detail in Section IV), this section also
serves as a quick review of the essence of SPECK.

A. Wavelet Transforms

We have chosen to use the CDF 9/7 biorthogonal wavelet
transform [32] among a large selection of available wavelets,
because it has proven to perform well in lossy scientific data
compression, and possesses desirable properties such as near
orthogonality and the ability to efficiently handle non-periodic
input [20]–[24]. We have borrowed a lifting [33] implemen-
tation of the CDF 9/7 transform from QccPack, an excellent
collection of signal processing tools [34]. This implementation
uses symmetric boundary handling and wavelet basis functions
with approximately unit norm. Because the CDF 9/7 wavelet
functions are near-orthogonal and normalized, any L2 error
in wavelet coefficients introduced during encoding is approx-
imately equal to the L2 error in the reconstructed data.

In practice, wavelet transforms are applied recursively to an
input array. The longer the array, the more transform passes
can be applied, leading to better information compaction and
thus compression. In our implementation, with an input array
of length N , the number of recursive transforms applied is
min(6, ⌊log2 N⌋ − 2). We choose to cap the recursion depth
at six because of the diminishing benefit of deeply recursive
wavelet transforms. Finally, for 3D volumes or 2D slices,
transforms are separately applied along each axis to take
advantage of data coherence in each dimension.

B. Overview of the Classic SPECK Algorithm

The classic SPECK algorithm is designed to locate wavelet
coefficients, and encode them bitplane-by-bitplane, from most
to least significand [15], [16]. Given a bitplane with place
value 2n, all coefficients with magnitude at least 2n—deemed
significant coefficients—are located first. SPECK performs this
task by “zooming in” from the full data volume or slice to in-
dividual significant coefficients. Specifically, SPECK performs
spatial divisions to partition 3D volumes into octrees or 2D
slices into quadtrees. Each subtree is then examined and desig-
nated as significant or insignificant based on whether or not it
contains at least one significant coefficient, during which one
bit per significance test is recorded. Only significant subtrees
are further partitioned, until individual significant coefficients
(leaf nodes in the tree) are reached. With the storage of the
significance information of subtrees at each level, this “zoom
in” procedure can be replayed during decoding. In the second
iteration, which processes bitplane 2n−1, more coefficients
will be deemed significant and recorded. Note that once a
significant coefficient is discovered, it is stored together with
all significant coefficients discovered from previous iterations,
and does not partake in further significance tests.

Significant coefficients need to have their values recorded,
which is accomplished with progressive precision using a
quantized representation. Coefficients already found signifi-
cant are maintained in a separate list, and a refinement pass
appends the next significant bit of such coefficients before
moving on to the next bitplane. The final reconstructed (non-
zero) value usually has one additional one-bit appended as
the least significant bit, resulting in mid-riser quantization that
centers the value in its refined interval. Mid-tread quantization
can also be achieved by rounding before applying SPECK if
the place value of the last bitplane coded is known a priori.

The bitplane-by-bitplane fashion of SPECK coding natu-
rally enables fixed-size compression, because the encoding
process can terminate whenever a user-prescribed output size
is reached, and the already-produced bitstream is always valid
for decoding. This fixed-size compression capability is shared
by most other transform-based compressors, such as ZFP.

C. Arbitrary Quantization Thresholds

When the original SPECK algorithm processes bitplanes
with place value 2n, n is always an integer. In our implemen-
tation, we have relaxed the integer requirement so any real
value can be used in the algorithm, and more importantly, in
the progressive quantization step. For example, denoting the
finest quantization step size by q, the successive larger steps
are 2q, 4q, 8q, etc., none necessarily being an integer power
of two. Note that one way to look at this modification is that
we pre-scale all coefficients by the reciprocal of q and then
apply the original SPECK algorithm with n ≥ 0.

Supporting arbitrary quantization thresholds provides us
with critical control of compression quality. The quantization
scheme used in our implementation explains how the finest
quantization step size q affects the compression quality. First,
this scheme has a dead zone of [−q, q]; wavelet coefficients
in the dead zone are not encoded and will be reconstructed as
zeroes during decoding. Second, coefficients with a magnitude
greater than q are quantized using a mid-riser quantizer, so that
all values in the range of (iq, (i+1)q] are quantized to (i+ 1

2)q,
where i is an integer. The maximum quantization error for
these coefficients is thus q

2 . Note that the error in the wavelet
reconstruction may exceed q

2 as errors in overlapping wavelets
may compound. Using this quantization scheme, a smaller q
means both a smaller dead zone and smaller quantization error
for every encoded coefficient, leading to a higher compression
quality; a larger q, similarly, leads to a lower quality. Naturally,
the better compression quality, the less outliers are produced,
and vice versa. As a result, q controls not only SPECK
compression quality, but also the amount of outliers need to be
corrected. This relationship is demonstrated in Figure 2. Thus,
allowing q to be an arbitrary value gives us great flexibility to
direct SPECK to yield a desired amount of outliers, which is
further explored in Section IV-D.

D. Embarrassingly Parallel Computation

Our implementation also includes an embarrassingly paral-
lel strategy to take advantage of multi-core CPUs. Specifically,

a big input volume is divided into multiple smaller chunks, and
each chunk is processed individually in parallel. The output
of each chunk is a separate bitstream, so these bitstreams are
concatenated together to form the final compressed output.
Our implementation uses OpenMP to orchestrate the parallel
execution, and can support cases where the volume dimension
is not divisible by the chunk dimension. Admittedly, this
strategy imposes a limit on the degree of parallelization
achievable—it cannot exceed the number of chunks. We plan
to explore means to expose more parallelism in the future.

IV. CODING OF OUTLIERS

This section describes in detail a SPECK-inspired algorithm
that efficiently encodes outliers; this algorithm enables SPERR
to bound a prescribed PWE tolerance. This section also inves-
tigates how to achieve a desirable storage balance between
coefficient coding and outlier coding in SPERR.

A. Algorithm Overview

The problem of outlier coding can be summarized as the
following: by comparing the original data and wavelet recon-
structed data, one can find a list of outliers that do not satisfy
the user-defined PWE tolerance t, i.e., |erri| = |xi − x̃i| > t,
where x̃ is the wavelet reconstruction of the original value x.
The task then is to record tuples of (pos, corr) where pos is
the outlier’s position within the input data, and corr is the cor-
rection value. A perfect correction value is corr = x−x̃, so the
SPERR reconstruction z would be perfect with z = x̃+ corr .
However, an error up to t is allowed, so we look at the PWE
with an imperfect correction value ˜corr :

|z−x| = |x̃+ ˜corr−x| = | ˜corr−(x−x̃)| = | ˜corr−err |. (1)

This equation shows that bounding the SPERR reconstruction
PWE |z−x| is equivalent to bounding the correction value in
the tuple (pos, corr) so that | ˜corr − err | ≤ t.

Now the problem of outlier coding is very similar to what
SPECK was designed to address: both encode a tuple of
position and value, where value is a quantized approximation
of the original (see Section III-B). Outlier coding has a very
specific termination criterion though, which is the point where
all outliers are corrected to be within the tolerance. Another
difference is that in our implementation, we linearize 2D or 3D
inputs to 1D arrays. We will discuss the decision to linearize
higher-dimension data in Section IV-C.

B. Algorithm Description

We define the input to the outlier coding algorithm as:
• Length of the 1D array: N ;
• A user-defined PWE tolerance: t (t > 0); and
• A list of outliers, each representing the position and cor-

rection value of an outlier: (pos, corr)i = (pos, x− x̃)i.
The algorithm output is a compact bitstream that can be used
at a later time to reconstruct individual outliers (pos, ˜corr)i,
where pos is exact and ˜corr i is an approximation.

The algorithm also uses the concept of significance with
respect to a quantization threshold thrd . If any one or more

members in a set of data points (in this case, outliers) have a
value magnitude greater than thrd , then this set is significant.
Otherwise, this set is insignificant. Note that as outlier coding
is a completely separate procedure from the coding of wavelet
coefficients, thrd values used here are completely independent
from those used in coefficient coding.

Listing 1: Overall outlier encoding algorithm. The three data
structures LSP ,LNSP and LIS are globally accessible.
Algorithm: OutlierCoder()
Require: A PWE tolerance t, a list of outlier tuples, (pos, corr)i,

and the array length N .
1: Save the signs of corr i separately, then corr i ← |corr i|.
2: Create two global lists representing existing and newly-found

significant points, LSP and LNSP . Both are initially empty.
3: Create a global list representing insignificant sets, LIS , which

is initialized to be the entire array [0,N).
4: Find the maximum integer n ≥ 0 so that 2nt < max(corr i).
5: while n ≥ 0 do
6: thrd ← 2nt
7: SortingPass(thrd) {details in Listing 2}
8: RefinementPass(thrd) {details in Listing 3}
9: n← n− 1

10: end while
Listing 1 contains the pseudo-code of the encoding algo-

rithm. At a high-level, this algorithm starts from the largest
possible threshold that is an integer power-of-two multiple of
the tolerance, locates significant data points with respect to
that threshold (SortingPass()), and then refines them using
quantization and bitplane coding (RefinementPass()). At the
end of this iteration, outliers deemed significant with respect
to thrd are located and refined by thrd . In the next iteration,
the threshold is halved, thus more outliers will be deemed
significant. New outliers, along with those identified from
previous iterations, will be further refined with respect to
the halved threshold. This operation iterates with smaller and
smaller thresholds until thrd equals t, at which point all
outliers will be deemed significant and encoded, and their
reconstruction values will not deviate from the true values by
more than t

2 , satisfying the PWE tolerance.

Listing 2: Algorithm for SortingPass().
Algorithm: SortingPass(thrd)

1: In increasing order of their sizes, for every set S that is already
in LIS , do Process(S, thrd).

2: ▷ Process(S, thrd)
3: Output a bit indicating if S is significant w.r.t. thrd .
4: if output was true then
5: if S is a single point then
6: Output the sign of S.
7: Put S in LNSP .
8: else
9: Code(S)

10: end if
11: Remove S from LIS .
12: end if {End of Process(S, thrd)}
13: ▷ Code(S)
14: Equally divide S into two disjoint subsets: sub1 and sub2.
15: Put sub1 and sub2 in LIS .
16: Process(sub1, thrd)
17: Process(sub2, thrd) {End of Code(S)}

Listing 2 presents the pseudo-code of SortingPass(), a

subroutine that locates and moves from LIS to LNSP all
previously insignificant points that become significant with re-
spect to the current thrd . This process involves repeated binary
set partitions until reaching individual significant data points
(recursive function calls between Process() and Code()).
During this process, more insignificant sets are generated and
added to LIS , waiting to be processed in the next iteration,
when a smaller threshold may test some of them significant.

Listing 3: Algorithm for RefinementPass().
Algorithm: RefinementPass(thrd)

1: for all p = (pos, corr) ∈ LSP do
2: Output a bit indicating if corr > thrd .
3: if output was true then
4: Encoder: corr ← corr − thrd
5: Decoder: corr ← corr + thrd

2
6: else
7: Decoder: corr ← corr − thrd

2
8: end if
9: end for

10: for all p = (pos, corr) ∈ LNSP do
11: Encoder: corr ← corr − thrd
12: Decoder: corr ← 3

2
thrd

13: end for
14: Append LNSP to the end of LSP , then reset LNSP to empty.

Listing 3 presents the pseudo-code of RefinementPass(), a
subroutine that performs one level of refinement to the previ-
ously identified significant points, and also quantizes newly-
discovered significant points, both with respect to the current
threshold thrd . When invoked repeatedly with decreasing
thresholds, it refines these points with each iteration specifying
a narrower range. During decoding, though the reconstructed
value can be anywhere within a specified range, it is chosen
at the middle of the range, same as the mid-riser quantizer
described in Section III-C. Lines 5, 7, and 12 show how this
quantization approach reconstructs correctors in a decoder.

Note that all the algorithm output is in binary form, thus
taking exactly one bit of storage. Every eight bits are then
packed into a byte in the output bitstream. In this bitstream,
every bit contains one of the following three types of infor-
mation, depending on which step it was output from:

1) set significance (Line 3 of Listing 2);
2) outlier sign (Line 6 of Listing 2); or
3) direction in which to refine a value (Line 2 of Listing 3).
A decoder then uses the same execution paths as the en-

coder, with significance test results coming from the bitstream.
Quantized outlier values are also restored along the way, and
decoding terminates when the bitstream is exhausted.

C. Choice of Linearization

Our outlier coding algorithm is inspired by SPECK, which
is designed to take advantage of clustering of significant
wavelet coefficients. As seen in Figure 1, unlike wavelet coef-
ficients, very little spatial correlation exists between outliers;
rather, they tend to appear at random positions. With little
or no spatial correlation to exploit, we choose to flatten the
sparse, multi-dimensional outlier arrays into a 1D array prior
to encoding, which simplifies the software implementation.

q = 1.3 t, Pct = 0.8% q = 1.5 t, Pct = 2.5% q = 1.7 t, Pct = 4.5%

Fig. 1: A typical outlier heat map (produced from the Light-
house image from the Kodak Image Suite [35]) where brown
dots represent the positions of outliers. Little, if any, correla-
tion between outlier positions can be observed. The subfigures
represent three outlier percentage levels (noted above figures)
which are controlled by the coefficient-outlier coding balance
from q = 1.3t to q = 1.7t (more details in Section IV-D).

Fig. 2: Total coding cost as a function of quantization step,
q, expressed in units of the error tolerance, t, for the Miranda
Pressure field at tolerance level t = 3.64× 10−11. The coding
cost is broken out into the cost to code wavelet coefficients
and outliers; the percentage labels indicate the portion of the
coding cost associated with outliers. Note that only the cost
above 10 BPP is shown in this plot.

Though there is little correlation for our outlier encoder to
exploit, we do benefit from another important property of
SPECK: the ability to efficiently encode position information
along with variable-length coding for values. Section V-A and
VI-E provide quantitative evaluations of this approach.

D. Balance Between Wavelet Coefficient and Outlier Coding

SPERR’s primary goal is to minimize the storage cost for
a given PWE tolerance. Secondarily, it also strives for a low
average error. The total storage cost of SPERR consists of two
components: the coding cost for wavelet coefficients and for

TABLE I: Given a field with a data range Range , translate a
label idx to an actual PWE tolerance t.

idx PWE Tolerance t Understanding of t
10 Range

210
≈ Range × 10−3 One thousandth of the data range

20 Range
220

≈ Range × 10−6 One millionth of the data range
30 Range

230
≈ Range × 10−9 One billionth of the data range

40 Range
240

≈ Range × 10−12 One trillionth of the data range

outliers. This section investigates how to balance the relative
storage allocation between the two to best achieve our goals.

A basic property of SPECK coding for wavelet coefficients
is that the more bits are produced, the less average error
it introduces. Most often, less average error leads to fewer
outliers and less storage cost for outlier coding. This inverse
relationship between the coding cost for wavelet coefficients
and outliers is demonstrated in Figure 2, with the technique
to adjust the storage balance formally explained later in
this section. Given that both coding costs (coefficients and
outliers) constitute the total SPERR storage and their inverse
relationship, it is reasonable to hypothesize that there is a
sweet spot where the total storage is minimal, as suggested
by Figure 2. However, we have found that it is nontrivial to
analytically model this relationship because it depends on the
characteristics of the data set and on the user-provided PWE
tolerance. As a result, we resort to empirical solutions.

We run a series of experiments with multiple data sets and
compression settings to better understand where the sweet
spot might lie. Here we report results of four fields from two
data sets, which are representative of all of the data sets we
have tested. Section VI-B provides more detail on these data
sets. For each data field, we test four (for single-precision
input) or five (for double-precision input) tolerance levels
indicated by idx ; the actual PWE tolerance t is derived as
t = Range

2idx
= max(f)−min(f)

2idx
of a data field f . Table I provides

an intuitive understanding of this translation. The parameter
passed to the compressor is the actual PWE tolerance, t, while
idx merely serves as a label facilitating discussion in this
paper. For each tolerance t, we then shift the balance between
wavelet coefficient coding and outlier coding by adjusting q,
the quantization step in coefficient coding (see Section III-C).
The smaller q is, the larger coefficient coding output will be,
using more coefficient coding. The bigger q is, the smaller
coefficient coding output will be, using more outlier coding.
In practice, we have observed that the optimal q is very close in
magnitude to t, so for convenience, we express q in multiples
of t. This experiment tests q ranging from q = t to q = 3t.

The top row of Figure 3 plots the relationship between q
(horizontal axis) and the overall bitrate (vertical axis). The
vertical axis represents the increased cost in overall bitrate
relative to the minimum bitrate observed over all q settings.
Not surprisingly, most curves take on a U shape, indicating
the existence of a sweet spot that gives the lowest bitrate. The
exact sweet spot varies from one field to another and from one
compression level to another, but they are mostly in between
q = 1.4t and q = 1.8t. There are also occasional occurrences
where bitrate drops unexpectedly with large q values in
fields Miranda Viscosity and Nyx Dark Matter Density. This
behavior happens when as q increases, the storage reduced
by wavelet coefficient coding outpaces the additional storage
incurred by outlier coding. In our experience, this phenomenon
appears to occur rather rarely with larger q values only, and
has no practical impact on the location of the minimum.

A secondary consideration of SPERR is the average error.
Because outlier coding is almost always less efficient than

C
od

in
g

C
os

t (
B

P
P

)

0.0

0.1

0.2

0.3

0.4

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=20 idx=30 idx=40 idx=50
Miranda Pressure

0
.
0

0
.
1

0
.
2

0
.
3

0
.
4

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=20 idx=30 idx=40 idx=50
Miranda Viscosity

0.
0

0.
1

0.
2

0.
3

0.
4

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=20 idx=30 idx=40 idx=50
Miranda X Velocity

0
.
0

0
.
1

0
.
2

0
.
3

0
.
4

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=15 idx=20 idx=25
Nyx Dark Matter Density

P
S

N
R

 (d
B

)

0
1
2
3
4
5
6
7

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=20 idx=30 idx=40 idx=50
Miranda Pressure

0

1

2

3

4

5

6

7

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=20 idx=30 idx=40 idx=50
Miranda Viscosity

0

1

2

3

4

5

6

7

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=20 idx=30 idx=40 idx=50
Miranda X Velocity

0

1

2

3

4

5

6

7

1.0 t
1.4 t

1.8 t
2.2 t

2.6 t
3.0 t

idx=10 idx=15 idx=20 idx=25
Nyx Dark Matter Density

Fig. 3: Relative difference of bitrate (top) and average error (bottom) compared to the lowest observed values. The x-axis is
quantization step q in coefficient coding expressed in units of the error tolerance t, and the y-axis is difference in BPP (top)
and decibel, dB (bottom). For each field, multiple tolerance levels, t ∝ 2−idx , are tested, as the idx numbers indicate.

wavelet coefficient coding at reducing average error, a modest
increase in coefficient coding bitrate can potentially lead to
a substantial average error reduction. The bottom row of
Figure 3 examines this consideration by plotting the differ-
ence in achieved peak-signal-to-noise ratio (PSNR), which is
inversely proportional to the logarithm of root-mean-square
error, at the same experiment settings (q at the same steps).
As before, these curves are drawn in comparison with the
lowest achieved PSNR for each idx setting; the vertical axis
shows the increase in PSNR (higher is better). This time,
all the curves are monotonically decreasing, suggesting that
shifting the balance to use more outlier coding only increases
the average error. These plots also show that though two
different points on the U-shaped curves in the top row can be
using the same amount of storage to satisfy a PWE tolerance,
they will yield quite different average errors. Combining these
two considerations, and the sweet spot range of q = 1.4t to
q = 1.8t, we conservatively choose q = 1.5t in our software
implementation. Further evaluation in Section VI-C will show
that this choice is satisfactory at providing competitive rate-
distortion curves.

V. EVALUATION: ASPECTS OF SPERR

Our compressor SPERR comprises coding of wavelet coef-
ficients and outliers (Section IV and III, respectively), with
each step producing a bitstream. These two bitstreams are
then concatenated and losslessly compressed by ZSTD [36] to
become the final SPERR output. This section evaluates aspects
of SPERR and our design choices.

A. Outlier Coding Efficiency

We evaluate coding efficiency of the outlier coding algo-
rithm, which is measured by bitrate of the outliers, the number
of bits encoding all outliers over the number of outliers. Note
that our implementation uses a header of a fixed size of twenty
bytes; this cost is included in all evaluations in this paper.

Quantization Step q

0

5

10

15

20

1.0 t 1.2 t 1.4 t 1.6 t 1.8 t 2.0 t 2.2 t 2.4 t

Visc-20 Visc-40 Nyx-20 Nyx-30

Fig. 4: Outlier bitrate (solid lines) and percentage (dashed
lines) at different q values expressed in units of the PWE tol-
erance t. The bitrate is calculated over the number of outliers.
Visc-20 and Visc-40 are Miranda Viscosity at tolerance level
idx = 20 and idx = 40, and Nyx-20 and Nyx-30 are Nyx
Dark Matter Density at idx = 20 and idx = 30.

Figure 4 presents this evaluation. It uses two data fields
and two tolerance levels on each field. Again we vary the
quantization step q for wavelet coefficient coding to adjust its
quality, consequently the number of outliers produced. The
percentage of outliers at each q is also plotted.

This evaluation shows that the cost of outlier coding (solid
lines) is mostly between 6 to 16 bits per outlier. As q increases,
more data points are identified as outliers, as the percentage
curves (dashed lines) show. However, the amortized cost to
encode individual outliers decreases, as the bitrate lines show,
because each set significance test (Line 3 in Listing 2) catches
a greater number of outliers that share the cost of that test.
At q = 1.5t, the value our software implementation uses
(see the last part of Section IV-D), this cost is approximately
10 bits per outlier. In our experience, this number is quite
consistent across data sets. Section VI-E will provide a more
detailed comparison between our strategy and the outlier
coding method used by the SZ family of compressors.

Chunk Size

A
cc

ur
ac

y
G

ai
n

D
iff

er
en

ce

0.0

0.1

0.2

0.3

0.4

0.5

1024^3 512^3 256^3 128^3 64^3

idx=10 idx=15 idx=20

Fig. 5: Difference in accuracy gain with various chunk sizes.
Three idx values represent three tolerance levels: t = Range

2idx
.

B. Chunk Size Impact on Compression Efficiency
SPERR achieves parallelization by dividing large 3D vol-

umes into smaller chunks. The size of chunks, however, has
impact on compression efficiency: the smaller the chunks are,
the more boundaries they produce, and wavelet compression
tends to handle boundaries less effectively. Further, small
chunk sizes limit the number of passes of wavelet transforms
that can be performed (see Section III-A), which also nega-
tively impacts compression efficiency. This section evaluates
the impact on compression efficiency by chunk sizes.

We use accuracy gain, explored by Lindstrom [37], to
measure compression efficiency. Accuracy gain is defined as

gain = log2
σ

E
−R (2)

where σ is the standard deviation of the original data, E is the
root-mean-square error, and R is the bitrate in BPP. A high
accuracy gain is preferred and achieved when either the error,
E, or rate, R, is low; intuitively, it measures the amount of
information inferred by a compressor that need not be stored.
Accuracy gain relates to the more common signal-to-noise ra-
tio (SNR) by gain = SNR

20 log10 2−R ≈ SNR
6.02 −R and essentially

flattens the 6.02 dB/bit slope commonly exhibited by SNR
plots, thus compacting the vertical range and emphasizing
differences in quality. Another benefit of accuracy gain is that
it incorporates both average error and the storage used into a
single number, allowing comparisons of two lossy-compressed
data sets when neither their rate nor error matches.

Figure 5 plots differences in accuracy gain with various
chunk sizes, using a cutout of 1, 0243 at the center of the
3, 0723 Miranda Density field. Unsurprisingly, bigger chunks
bring higher accuracy gain. At the same time, the benefit
diminishes with very large chunks. One may also observe that
efficiency is even more impacted by chunk sizes for smaller
error tolerances (bigger idx). Given that the chunk size also
dictates the degree of parallelism that may be achieved (see
Section III-D), in practice, we find that the range between 1283

and 2563 is preferable because it provides good compression
efficiency and also enables multi-way parallelization. Our
software uses a default chunk size of 2563, but it needs not
to be powers of two nor divisible by the volume dimensions.

C. Compression Time Breakdown
SPERR has four major steps in its data processing pipeline:

1) wavelet transform on the input data; 2) SPECK coding of

0

5

10

15

20

idx=10 idx=20 idx=30 idx=40 idx=50

Ru
nt

im
e

(s
)

Tolerance Levels (Labelled by idx)

XForm SPECK Outlier Locating Outlier Coding

Fig. 6: Execution time breakdown on field Miranda Viscosity.

Number of CPU Cores

S
pe

ed
up

0

1

2

3

4

5

1 2 4 8 16 32 64 126

idx=10 idx=15 idx=20

8

4

2

0

16

32

Fig. 7: Scalability test using up to 126 CPU cores with three
tolerance levels. Note that the y-axis is on a logarithmic scale.

wavelet coefficients; 3) locating outliers, which consists of an
inverse wavelet transform and a comparison with the original
input data; and 4) encoding located outliers. This section
reports computational time on these four steps separately. We
run this experiment on a compute node equipped with two
64-core AMD Epyc 7763 CPUs (128 cores in total), 256 GB
of system memory, and SPERR compiled using GCC 11.2.0.

Figure 6 reports this time breakdown in a serial compression
of Miranda Viscosity at 3842×256. Though results on only one
field are reported here, the time breakdown is representative
of all fields that we have tested. There are five PWE tolerance
levels tested, which are labeled by idx (see idx explanation in
the third paragraph of Section IV-D). The result shows an in-
creasing total compression time as the PWE tolerance tightens,
mostly due to the increased SPECK coding time. SPECK time
increases because tighter PWE tolerances lead to both more
wavelet coefficients being located and that they are encoded
with finer quantization precisions (see Section III-C). Wavelet
transform time remains constant because those transforms are
performed regardless of the tolerance level. Outlier locating
and coding time also remains quite stable because the number
of outliers does not fluctuate much, which is a design objective
and is achieved by our strategy of choosing the quantization
step size q, as discussed in Section IV-D.

D. Scalability Test

This section explores how well SPERR scales on modern
multi-core CPU architectures by conducting a strong scaling
experiment. The test platform is the same 128-core compute
node described in Section V-C. This experiment uses a cutout
of 2, 0483 from the 3, 0723 Miranda Density field in single
precision; the cutout is due to memory capacity limits on
the test platform. With SPERR’s default chunk size of 2563,

512-way parallelization is possible. We test on three PWE
tolerance levels labeled as idx = 10, 15, and 20. For each
tolerance level, we increase the number of OpenMP threads,
thus CPU cores in use, from one to 126. (We do not use
up all 128 CPU cores because it is recommended practice
to leave a few CPU cores for system processes.) Figure 7
reports achieved parallel speedups compared to the serial
execution time in a compression task. The result shows a
close-to-linear speedup with up to 16 cores, and a gradually
slower increase afterwards. Further, the speedup is seemingly
approaching a plateau after 64 cores, signaling limitations of
our embarrassingly parallel strategy.

VI. EVALUATION: COMPARING WITH OTHER TOOLS

A. Other Compressors And Test Environment

We have used SPERR version 0.4 for all comparisons in
this study. Other scientific data compressors used in these
comparisons are SZ3 [5], ZFP [8], TTHRESH [18], and
MGARD [2]. All compressors, including our SPERR, are open
source and publicly available. Section II has a brief description
of these compressors, and this section provides the specifics
in our experiment.

• SZ3: version 3.1.5.4 with the default config file except
for enabled OpenMP.

• ZFP: version 1.0.0 with default configurations.
• TTHRESH: commit number ae58002 (the latest code

as of Sep. 9th 2022) with default configurations.
• MGARD: version 1.3.0 with default configurations and

OpenMP backend.
All five compressors are compiled using GCC 11.2.0. All

comparisons in this section are conducted on a compute node
equipped with two 18-core Intel Xeon 6240 processors and
394 GB system memory, running CentOS 7 operating system.

B. Testing Data Sets

Our tests use openly available data sets from SDRBench,
a collection of representative scientific data sets frequently
used in literature for compression evaluation [38]. Specifically,
we have chosen four simulations briefly described blow. The
SDRBench website has more details on each of them.

• Miranda: hydrodynamics turbulence simulation with
double-precision output at 3842 × 256 and single-
precision output at 3, 0723;

• S3D: combustion, double-precision output at 5003;
• Nyx: cosmology, single-precision output at 5123; and
• QMCPACK: ab initio quantum Monte Carlo simulation,

single-precision output at 692×115×288 (288 orbitals).
The QMCPACK data set is essentially a stack of 3D

volumes of size 692× 115, which is best to be compressed as
288 individual volumes. SPERR is configured to do so with its
chunk size specified as 692 × 115. The other compressors are
configured to process a single 3D volume of size 692×33120
(33120 = 115 × 288), which is less than ideal, but is also
listed as example configurations on SDRBench.

C. Comparison Of Compression Efficiency

This section compares the efficiency of SPERR with other
leading compressors. We again use accuracy gain (see Sec-
tion V-B) as the main metric, and an integer idx to label
PWE tolerance levels (see Table I). Note that it is the PWE
tolerance t, rather than idx , passed in as the quality control
parameter to compressors. We increment idx from zero to the
point where t is approaching machine epsilon. For single-
precision input (Nyx and QMCPACK), the upper bound on
idx reaches between 25 and 35, and for double-precision
input (S3D and Miranda), the upper bound reaches between
50 and 60. We note that when t is tight MGARD cannot
bound the error tolerance 1 and TTHRESH starts to use
significantly more bits without reducing average error nor
the maximum PWE. When such unexpected behavior occurs,
the offending test is terminated, and not included in the
presentation here. (TTHRESH requires some special attention:
it supports a target average error (e.g., PSNR) but not a
PWE guarantee. As a result, at each idx we prescribe for
TTHRESH PSNR = (20 log10 2) × idx , which results in a
halving of root-mean-square error for each increment to idx .
Lastly, TTHRESH was not able to finish computation on data
set QMCPACK, so is not included in results for QMCPACK.)

Figure 8 presents comparison results over nine data fields
using rate-distortion curves. We use logarithmic scale on
the x-axis so low-rate, low-quality compression regions are
clearly shown. Compression in these regions, for example
most compressors achieve around 50 dB in PSNR at 1

32 BPP,
may already provide sufficient quality for applications such as
visualization. There are a few interesting observations. First,
the curves increase at low rates, indicating that significant
compression occurs, where each halving in error, E, incurs
less than one additional bit of compressed storage, R (see
Equation 2). Most curves then reach a stable plateau, where
each additional bit encoded halves the error, indicating that
random trailing significant bits have been reached. This plateau
spans a wide rate range, which is often 10- to 20-bit wide,
though it appears horizontally “compacted” by the logarithmic
scale in these plots. Second, SPERR exhibits a clear advantage
in achieving high accuracy gains at mid-to-high rates (i.e.,
more than 2 BPP), while remains competitive at low rates
(i.e., less than 1 BPP). In most scientific applications involving
quantitative analyses, we argue that high-rate, high-quality
compression is much more useful and frequently requested
than low-rate, low-quality compression. Third, not all curves
exhibit the same level of smoothness, which indicates different
degrees of predictability of a compressor’s behavior. On this
account, SPERR is one of the more predictable compressors.
Overall, these rate-distortion plots suggest SPERR’s outstand-
ing compression efficiency over a wide range of bitrates.

Another aspect of the efficiency comparison is how many
bits a compressor needs to satisfy a PWE tolerance, regardless
of the overall average error. We perform this test using the
same data fields as in Figure 8 with a selection of tolerance

1Suspected bugs in MGARD have been reported to MGARD authors.

	5

	10

	15

	20

	25

	30

	35

	40

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16

SPERR
TTHRESH

SZ3
ZFP

MGARD

S3D	CH4

	5

	10

	15

	20

	25

	30

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16 	32

SPERR
TTHRESH

SZ3
ZFP

MGARD

S3D	Temperature

	5

	10

	15

	20

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16 	32

SPERR
TTHRESH

SZ3
ZFP

MGARD

S3D	X	Velocity

	0

	5

	10

	15

	20

	25

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16 	32

SPERR
TTHRESH

SZ3
ZFP

MGARD

Miranda	Pressure

	0

	5

	10

	15

	20

	25

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16 	32

SPERR
TTHRESH

SZ3
ZFP

MGARD

Miranda	Viscosity

	0

	5

	10

	15

	20

	25

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16 	32

SPERR
TTHRESH

SZ3
ZFP

MGARD

Miranda	X	Velocity

	0
	2
	4
	6
	8

	10
	12
	14
	16

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16

SPERR
SZ3
ZFP

MGARD

QMCPACK

-2

-1

	0

	1

	2

	3

	4

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16 	32

SPERR
TTHRESH

SZ3
ZFP

MGARD

Nyx	Dark	Matter	Density

	4

	6

	8

	10

	12

	14

	16

1/32 1/16 1/8 1/4 1/2 	1 	2 	4 	8 	16 	32

SPERR
TTHRESH

SZ3
ZFP

MGARD

Nyx	X	Velocity

Fig. 8: Rate-distortion curves comparing five compressors on nine data fields. The x-axis is the achieved bitrate measured in
BPP, and the y-axis is accuracy gain as defined in Section V-B. Note that the x-axis is plotted in logarithmic scale.

R
at

e
(B

P
P

)

0

5

10

15

20

25

30

35

CH4-2
0

Tem
p-2

0

VX1-2
0

Pres
s-2

0

Visc
-20

VX2-2
0

Nyx
-20

VX3-2
0

QMC-20

CH4-4
0

Tem
p-4

0

VX1-4
0

Pres
s-4

0

Visc
-40

VX2-4
0

SPERR SZ3 ZFP MGARD

Fig. 9: Achieved bitrate on multiple data sets and tolerance
levels. Abbreviations on the x-axis are explained in Table II.

TABLE II: Explanation of abbreviations for data fields and
compression levels used in Figures 9, 10, and 11.

CH4-20, CH4-40 S3D CH4, idx = 20 and 40
Temp-20, Temp-40 S3D Temperature, idx = 20 and 40
VX1-20, VX1-40 S3D X Velocity, idx = 20 and 40
Press-20, Press-40 Miranda Pressure, idx = 20 and 40
Visc-20, Visc-40 Miranda Viscosity, idx = 20 and 40
VX2-20, VX2-40 Miranda X Velocity, idx = 20 and 40
QMC-20 QMCPACK, idx = 20
Nyx-20 Nyx Dark Matter Density, idx = 20
VX3-20 Nyx X Velocity, idx = 20

levels. This time TTHRESH is not tested because it does
not have an error-bounded compression mode. MGARD is
also not presented at idx = 40 tolerance levels because it
gives results obviously exceeding the error tolerance. Figure 9
presents our test results, using abbreviations for field names
and tolerance levels explained in Table II. These results show
that SPERR uses the least number of bits to guarantee a given
PWE tolerance in all but two cases, again highlighting the
superior compression efficiency of SPERR.

Finally, we note that the main evaluation metric used here,
accuracy gain, is generic in nature and aims to provide an
overview of SPERR’s characteristics. Evaluations using more
domain-specific metrics (e.g., SSIM [39]) are likely necessary
to determine SPERR’s applicability in a particular use case.

D. Comparison of Runtime Performance

This section compares parallel runtime performance on
multi-core CPUs. All five compressors support parallelization
through OpenMP, which we have enabled during compilation.
This experiment uses the same data fields and tolerance levels
summarized in Table II. There are two considerations: first,
MGARD is not presented at idx = 40 tolerance levels, be-
cause it gives results obviously exceeding the error tolerance.
Second, TTHRESH takes in PSNR targets, instead of PWE

E
xe

cu
tio

n
T

im
e

(s
)

0

10

20

30

CH4-
20

Tem
p-

20

VX1-
20

Pre
ss

-2
0

Visc
-2

0

VX2-
20

Nyx
-2

0

VX3-
20

QM
C-2

0

CH4-
40

Tem
p-

40

VX1-
40

Pre
ss

-4
0

Visc
-4

0

VX2-
40

SPERR SZ3 ZFP TTHRESH MGARD

41.4 42.5 42.4 69.4 75.3 74.5 89.6 88.4

Fig. 10: Compression time on multiple data sets and tolerance
levels. Abbreviations on the x-axis are explained in Table II.

C
od

in
g

C
os

t (
B

it-
P

er
-O

ut
lie

r)

5

10

15

20

CH4-2
0

Tem
p-2

0

VX1-2
0

Pres
s-2

0

Visc
-20

VX2-2
0

Nyx
-20

VX3-2
0

QMC-20

CH4-4
0

Tem
p-4

0

VX1-4
0

Pres
s-4

0

Visc
-40

VX2-4
0

SPERR SZ3

Fig. 11: Comparison of outlier coding efficiency between
SPERR and SZ. The x-axis is different data fields and tol-
erance levels (see Table II), and the y-axis is the coding cost
of outliers. Note that only the cost above 5 bits is shown.

tolerances, because average errors are the only parameters
that TTHRESH accepts. Using the same formula discussed
and used in Section VI-C, these PSNR targets for TTHRESH
are determined as 120.41 dB at idx = 20, and 240.82 dB at
idx = 40. In fact, these PSNR targets are quite close to the
PSNR values SPERR achieved at respective tolerance levels.

Figure 10 presents this runtime comparison using four
OpenMP threads. The reported numbers are wall clock times
of invoking respective command-line tools to perform a com-
pression task. Note that eight runs have time exceeding the
graph scale, so their respective bars are truncated with a text
label indicating the actual time. These results show that SZ3
and ZFP are comparable and are extremely fast compared to
the rest compressors. SPERR runs a few times slower than
SZ3 and ZFP, but is also significantly faster than TTHRESH.
Finally, SPERR performs comparably with MGARD.

E. Comparison Of Outlier Coding Efficiency

To the best of our knowledge, SPERR’s approach to pro-
viding a PWE guarantee—explicitly encoding corrections to
outliers that violate the PWE tolerance t—is shared by only
one other lossy compressor: SZ. SZ uses a different scheme to
encode outliers. It first quantizes prediction errors to integer
multiples of 2t, analogous to SPERR’s correction values. SZ
then uses Huffman coding to efficiently encode these inte-
gers [6]. The Huffman codes and tree are finally compressed

by ZSTD [36]. We perform experiments to compare outlier
coding efficiency between SPERR and SZ by first intercepting
SPERR’s data processing pipeline to obtain the list of outliers,
and then feeding the same list of outliers to respective outlier
coding schemes (SPERR’s and SZ’s).

To prepare the outliers for SZ, we first quantize the SPERR
outlier correction values as multiples of the PWE tolerance. SZ
encodes a correction value for every data point, where inliers
are represented as zero-valued correctors. Hence, SZ does not
code the positions of outliers. Unlike in SZ, which usually
uses thousands of quantization bins, the SPERR correctors are
usually small; we observed no corrector outside the range of
{−4, . . . , 4}. Finally, we note that SZ provides a separate tool,
compressQuantBins, in its QCAT package [40] to perform this
coding task. We used compressQuantBins in this experiment.

Figure 11 presents this comparison using the same data
fields and compression levels described in Table II. It uses bit-
per-outlier, the average number of bits to encode an outlier, to
measure the coding efficiency. This figure shows that SPERR
uses around ten bits to encode one outlier across all experiment
settings, consistent with our findings in Section V-A. It also
shows that SPERR consistently uses fewer bits than SZ to
encode the same set of outliers, usually by a 1- to 2-bit margin.

VII. FUTURE WORK AND CONCLUSION

SPERR has great potential to grow its capabilities. First,
the property of roughly equal root-mean-square error between
wavelet coefficients and their inversely transformed recon-
struction (see Section III-A) enables estimating compression
error without much computational overhead, thus compres-
sion targeting an average error is feasible. Second, wavelet
transforms naturally represent data as hierarchies with self-
similarities, i.e., each coarsened hierarchy level resembles the
full-resolution data. This hierarchy enables multi-level recon-
struction that is useful in areas such as explorative analysis.
Third, the bitplane-by-bitplane quantization scheme in SPECK
means that the output bitstream is embedded, so any prefix of
the bitstream can reconstruct a less-accurate version of the
data, in addition to the error-bounded version provided by the
full bitstream. This embedded property makes SPERR suitable
for streaming applications where data reconstruction using
a partially transmitted bitstream, though less accurate, may
still be appreciated. Fourth, as we have alluded, there is still
great opportunity to improve SPERR’s runtime performance,
potentially through parallelization schemes that are more so-
phisticated and allow for porting the algorithm to GPUs.

In conclusion, this paper has introduced SPERR, a new
tool for lossy scientific data compression on HPCs. SPERR
can provide both size-bounded and maximum point-wise error
(PWE) bounded compression; the latter ability is provided
by a novel use of an outlier coding algorithm that explicitly
corrects data points exceeding a prescribed PWE tolerance.
We have thoroughly evaluated SPERR and compared it against
leading scientific data compressors; these studies demonstrate
that SPERR has one of the most competitive compression
efficiencies with the drawback of a higher computational cost.

ACKNOWLEDGMENT

This material is based upon work supported by the National Center
for Atmospheric Research, which is a major facility sponsored by
the National Science Foundation under Cooperative Agreement No.
1852977.

This work was performed in part under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Laboratory
under Contract DE-AC52-07NA27344 and was supported in part by
the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research.

REFERENCES

[1] C. S. Zender, “Bit grooming: statistically accurate precision-preserving
quantization with compression, evaluated in the netcdf operators (nco,
v4. 4.4.8+),” Geoscientific Model Development, vol. 9, no. 9, pp. 3199–
3211, 2016.

[2] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5, pp. 65–76,
2018.

[3] ——, “Multilevel techniques for compression and reduction of scientific
data—the multivariate case,” SIAM Journal on Scientific Computing,
vol. 41, no. 2, pp. A1278–A1303, 2019.

[4] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao et al., “Sz3: A modular framework
for composing prediction-based error-bounded lossy compressors,” IEEE
Transactions on Big Data, 2022.

[5] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE). IEEE, 2021, pp. 1643–1654.

[6] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. IEEE, 2017, pp. 1129–1139.

[7] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data). IEEE, 2018, pp. 438–447.

[8] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674–2683, 2014.

[9] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.

[10] L. Hayne, J. Clyne, and S. Li, “Using neural networks for two di-
mensional scientific data compression,” in 2021 IEEE International
Conference on Big Data (Big Data), 2021, pp. 2956–2965.

[11] J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, J. M.
Arblaster, S. Bates, G. Danabasoglu, J. Edwards et al., “The community
earth system model (cesm) large ensemble project: A community
resource for studying climate change in the presence of internal climate
variability,” Bulletin of the American Meteorological Society, vol. 96,
no. 8, pp. 1333–1349, 2015.

[12] J. Kay and C. Deser, “The community earth system model
(cesm) large ensemble project,” 2016. [Online]. Available: http:
//www.cesm.ucar.edu/projects/community-projects/LENS

[13] Y. Li, E. Perlman, M. Wan, Y. Yang, C. Meneveau, R. Burns, S. Chen,
A. Szalay, and G. Eyink, “A public turbulence database cluster and
applications to study lagrangian evolution of velocity increments in
turbulence,” Journal of Turbulence, no. 9, p. N31, 2008.

[14] E. Perlman, R. Burns, Y. Li, and C. Meneveau, “Data exploration of
turbulence simulations using a database cluster,” in Proceedings of the
2007 ACM/IEEE conference on Supercomputing, 2007, pp. 1–11.

[15] W. A. Pearlman, A. Islam, N. Nagaraj, and A. Said, “Efficient, low-
complexity image coding with a set-partitioning embedded block coder,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 14, no. 11, pp. 1219–1235, 2004.

[16] X. Tang and W. A. Pearlman, “Three-dimensional wavelet-based com-
pression of hyperspectral images,” in Hyperspectral Data Compression.
Springer, 2006, pp. 273–308.

[17] J. Clyne, “Progressive data access for regular grids,” in High Perfor-
mance Visualization, E. W. Bethel, H. Childs, and C. Hansen, Eds.
CRC, 2012, pp. 145–169.

[18] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola, “TTHRESH: Tensor
compression for multidimensional visual data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 26, no. 9, pp. 2891–2903,
2019.

[19] S. Li, N. Marsaglia, C. Garth, J. Woodring, J. Clyne, and H. Childs,
“Data reduction techniques for simulation, visualization and data anal-
ysis,” Computer Graphics Forum, vol. 37, no. 6, pp. 422–447, 2018.

[20] J. D. Villasenor, B. Belzer, and J. Liao, “Wavelet filter evaluation for
image compression,” IEEE Transactions on Image Processing, vol. 4,
no. 8, pp. 1053–1060, 1995.

[21] R. A. DeVore, B. Jawerth, and V. Popov, “Compression of wavelet
decompositions,” American Journal of Mathematics, vol. 114, no. 4,
pp. 737–785, 1992.

[22] B. E. Usevitch, “A tutorial on modern lossy wavelet image compression:
foundations of JPEG 2000,” IEEE Signal Processing Magazine, vol. 18,
no. 5, pp. 22–35, 2001.

[23] S. Li, K. Gruchalla, K. Potter, J. Clyne, and H. Childs, “Evaluating the
efficacy of wavelet configurations on turbulent-flow data,” in IEEE 5th
Symposium on Large Data Analysis and Visualization, 2015, pp. 81–89.

[24] S. Li, J. Clyne, and H. Childs, “In situ wavelet compression on
supercomputers for post hoc exploration,” in In Situ Visualization for
Computational Science, H. Childs, J. C. Bennett, and C. Garth, Eds.
Cham: Springer International Publishing, 2022, pp. 37–59.

[25] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[26] A. Islam and W. A. Pearlman, “Embedded and efficient low-complexity
hierarchical image coder,” in Visual Communications and Image Pro-
cessing’99, vol. 3653. International Society for Optics and Photonics,
1998, pp. 294–305.

[27] J. M. Shapiro, “Embedded image coding using zerotrees of wavelet
coefficients,” IEEE Transactions on Signal Processing, vol. 41, no. 12,
pp. 3445–3462, 1993.

[28] D. Taubman, “High performance scalable image compression with
EBCOT,” IEEE Transactions on Image Processing, vol. 9, no. 7, pp.
1158–1170, 2000.

[29] P. Howard, F. Kossentini, B. Martins, S. Forchhammer, and W. Ruck-
lidge, “The emerging JBIG2 standard,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 8, no. 7, pp. 838–848, 1998.

[30] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Transactions on Database Systems, vol. 31,
no. 1, pp. 1–38, 2006.

[31] P. Elias, “Universal codeword sets and representations of the integers,”
IEEE Transactions on Information Theory, vol. 21, no. 2, pp. 194–203,
1975.

[32] A. Cohen, I. Daubechies, and J.-C. Feauveau, “Biorthogonal bases of
compactly supported wavelets,” Communications on Pure and Applied
Mathematics, vol. 45, no. 5, pp. 485–560, 1992.

[33] I. Daubechies and W. Sweldens, “Factoring wavelet transforms into
lifting steps,” Journal of Fourier analysis and applications, vol. 4, no. 3,
pp. 247–269, 1998.

[34] J. E. Fowler, “QccPack: An open-source software library for quan-
tization, compression, and coding,” in Applications of Digital Image
Processing XXIII, vol. 4115. International Society for Optics and
Photonics, 2000, pp. 294–301.

[35] R. Franzen, “Kodak lossless true color image suite,” source:
https://r0k.us/graphics/kodak, vol. 4, no. 2, 1999.

[36] Facebook, “Zstandard–fast real-time compression algorithm.” [Online].
Available: https://github.com/facebook/zstd

[37] P. Lindstrom, “MULTIPOSITS: Universal coding of Rn,” in Conference
on Next Generation Arithmetic, J. Gustafson and V. Dimitrov, Eds.
Springer International Publishing, 2022, pp. 66–83.

[38] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, “SDRBench: Scientific data reduction benchmark for lossy
compressors,” in IEEE International Conference on Big Data (Big Data),
2020, pp. 2716–2724. [Online]. Available: https://sdrbench.github.io/

[39] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
signal processing letters, vol. 9, no. 3, pp. 81–84, 2002.

[40] S. Di, “Quick Compression Analysis Toolkit (QCAT).” [Online].
Available: https://github.com/szcompressor/qcat

http://www.cesm.ucar.edu/projects/community-projects/LENS
http://www.cesm.ucar.edu/projects/community-projects/LENS
https://github.com/facebook/zstd
https://sdrbench.github.io/
https://github.com/szcompressor/qcat

	Introduction
	Background
	Wavelet Transforms and Coding
	Wavelet Transforms
	Overview of the Classic SPECK Algorithm
	Arbitrary Quantization Thresholds
	Embarrassingly Parallel Computation

	Coding of Outliers
	Algorithm Overview
	Algorithm Description
	Choice of Linearization
	Balance Between Wavelet Coefficient and Outlier Coding

	Evaluation: Aspects of SPERR
	Outlier Coding Efficiency
	Chunk Size Impact on Compression Efficiency
	Compression Time Breakdown
	Scalability Test

	Evaluation: Comparing With Other Tools
	Other Compressors And Test Environment
	Testing Data Sets
	Comparison Of Compression Efficiency
	Comparison of Runtime Performance
	Comparison Of Outlier Coding Efficiency

	Future Work and Conclusion
	References

